

Transcriptional **EX** Regulation and **Expression Facility**

trex info@cornell.edu

Take our Survey!

Sign up for our List-Serv!

*Send an email message to

TREX-GENEREG-L-request@cornell.edu

with "join" as the subject

Upcoming Events

Sign up at our website at our website to indicate interest and receive priority and receive admission admission

TREx Workshops!

RNA Extraction: 1 day workshop – early October

RNA-seq walkthrough: 4 week workshop – mid October

Biological Insights: 1 day workshop – early December

• Tech Talks: 4th Tuesday of the Month

BRC Bioinformatics Facility Workshops

Introduction to BioHPC Cloud (September 9th+11th)

Linux for Biologists (September 16th-October 2nd, M+W)

RNA-Seq Data Analysis (October 14th-30th, M+W)

Coming Soon to TREx

New and Improved Project Submission Form

Available on our web site in early September

New service: ATACseq

Assay for Transposase-Accessible Chromatin by sequencing

Identify promoters, enhancers, motifs enriched in open chromatin expressed genes, 'poised' genes (vs RNAseq)

Researcher provides intact nuclei (preserving native state)

Goal: launch by the end of 2019

Contact us if you are interested in early access (beta-testing) trex info@cornell.edu Transcriptional Regulation and Expression Facility

Jen Grenier
Ann Tate
Christine Butler
Faraz Ahmed
trex_info@cornell.edu

RNAseq Analysis: Reads to Counts

RNAseq Analysis

Unsupervised

Analysis of expressed, variable genes independent of sample groups

Principal components analysis Hierarchical clustering

Supervised

Analysis of differential expression between sample groups

Relative expression (A vs B)
log2(fold-change)
DE genes
Gene set enrichment analysis

Global signal

Experimental signal

Unsupervised comparison of expression profiles between samples

PCA: Dimensionality reduction

~10,000 expressed genes for 15 samples \rightarrow 15 principal components PC1 explains the greatest amount of variation in the dataset, then PC2, ... Samples with similar principal components have more similar profiles

Unsupervised comparison of expression profiles between samples

Hierarchical clustering

Distance matrix → sample 'tree'

Unsupervised comparison of expression profiles between samples

2D Hierarchical clustering

Distance matrices → sample 'tree' and gene 'tree' with heatmap

row-normalized heatmap

gene clustering:
differences
between samples

Top 500 variable genes

RNAseq Analysis: Clustering

Unsupervised comparison of expression profiles between samples

2D Hierarchical clustering

Distance matrices → sample 'tree' and gene 'tree' with heatmap

CPM heatmap

gene clustering: expression level

Software tools

R (RStudio)

JMP (SAS)

RNAseq Analysis

Unsupervised

Analysis of expressed, variable genes independent of sample groups

Principal components analysis Hierarchical clustering

Supervised

Analysis of differential expression between sample groups

Relative expression (A vs B)
log2(fold-change)
DE genes
Gene set enrichment analysis

Global signal

Experimental signal

RNAseq: Relative Expression

Supervised comparison of expression profiles between samples

Statistical test for differential expression: Appropriate statistical model for RNAseq data Non-uniform mean-variance relationships → negative binomial distribution Software: DEseq2, EdgeR, cuffdiff

What is interesting / important about differentially expressed genes?

DE gene enrichment: Software tools

Panther

DAVID

Reactome

Gene Set Enrichment Analysis (GSEA)

"A computational method that determines whether an *a priori* defined set of genes shows statistically significant, concordant differences between two biological states."

Genes ranked by log2FC

GSEA Enrichment Plot

Fig 1: Enrichment plot: P53_DOWN_KANNAN

Profile of the Running ES Score & Positions of GeneSet Members on the Rank Ordered List

Running GSEA for RNAseq

.rnk file col1 = gene names/IDs

col2 = log2FC

use all expressed genes (~10,000 rows)

optional

.gmt file custom gene set

or use built-in Molecular Signatures DB

.rnk file gene identifiers must match gene set!

Use parameters recommended for RNAseq