Transcriptional **EX** Regulation and **Expression Facility** trex info@cornell.edu Take our Survey! ### Sign up for our List-Serv! *Send an email message to TREX-GENEREG-L-request@cornell.edu with "join" as the subject ### **Upcoming Events** Sign up at our website at our website to indicate interest and receive priority and receive admission admission ### TREx Workshops! RNA Extraction: 1 day workshop – early October RNA-seq walkthrough: 4 week workshop – mid October Biological Insights: 1 day workshop – early December • Tech Talks: 4th Tuesday of the Month ### BRC Bioinformatics Facility Workshops Introduction to BioHPC Cloud (September 9th+11th) Linux for Biologists (September 16th-October 2nd, M+W) RNA-Seq Data Analysis (October 14th-30th, M+W) ## **Coming Soon to TREx** #### New and Improved Project Submission Form Available on our web site in early September #### New service: ATACseq Assay for Transposase-Accessible Chromatin by sequencing Identify promoters, enhancers, motifs enriched in open chromatin expressed genes, 'poised' genes (vs RNAseq) Researcher provides intact nuclei (preserving native state) Goal: launch by the end of 2019 Contact us if you are interested in early access (beta-testing) trex info@cornell.edu Transcriptional Regulation and Expression Facility Jen Grenier Ann Tate Christine Butler Faraz Ahmed trex_info@cornell.edu ### **RNAseq Analysis: Reads to Counts** # **RNAseq Analysis** #### Unsupervised Analysis of expressed, variable genes independent of sample groups Principal components analysis Hierarchical clustering #### **Supervised** Analysis of differential expression between sample groups Relative expression (A vs B) log2(fold-change) DE genes Gene set enrichment analysis **Global signal** **Experimental signal** #### **Unsupervised** comparison of expression profiles between samples #### **PCA: Dimensionality reduction** ~10,000 expressed genes for 15 samples \rightarrow 15 principal components PC1 explains the greatest amount of variation in the dataset, then PC2, ... Samples with similar principal components have more similar profiles #### **Unsupervised** comparison of expression profiles between samples #### **Hierarchical clustering** Distance matrix → sample 'tree' #### **Unsupervised** comparison of expression profiles between samples #### **2D Hierarchical clustering** Distance matrices → sample 'tree' and gene 'tree' with heatmap row-normalized heatmap gene clustering: differences between samples Top 500 variable genes ## **RNAseq Analysis: Clustering** #### **Unsupervised** comparison of expression profiles between samples #### **2D Hierarchical clustering** Distance matrices → sample 'tree' and gene 'tree' with heatmap CPM heatmap gene clustering: expression level **Software tools** R (RStudio) JMP (SAS) # **RNAseq Analysis** #### Unsupervised Analysis of expressed, variable genes independent of sample groups Principal components analysis Hierarchical clustering #### **Supervised** Analysis of differential expression between sample groups Relative expression (A vs B) log2(fold-change) DE genes Gene set enrichment analysis **Global signal** **Experimental signal** ## RNAseq: Relative Expression #### **Supervised** comparison of expression profiles between samples Statistical test for differential expression: Appropriate statistical model for RNAseq data Non-uniform mean-variance relationships → negative binomial distribution Software: DEseq2, EdgeR, cuffdiff # What is interesting / important about differentially expressed genes? ### DE gene enrichment: Software tools **Panther** **DAVID** Reactome ### **Gene Set Enrichment Analysis (GSEA)** "A computational method that determines whether an *a priori* defined set of genes shows statistically significant, concordant differences between two biological states." Genes ranked by log2FC #### **GSEA Enrichment Plot** Fig 1: Enrichment plot: P53_DOWN_KANNAN Profile of the Running ES Score & Positions of GeneSet Members on the Rank Ordered List ### **Running GSEA for RNAseq** .rnk file col1 = gene names/IDs col2 = log2FC use all expressed genes (~10,000 rows) optional .gmt file custom gene set or use built-in Molecular Signatures DB .rnk file gene identifiers must match gene set! Use parameters recommended for RNAseq